The following is organized into three sections – Academic Papers, Industry & Research Organizations, and Government & Regulatory Resources.
Academic Papers
- Adi, Y., Baum, C., Cisse, M., Pinkas, B., & Keshet, J. (2018). Turning your weakness into a strength: Watermarking deep neural networks by backdooring. In Proceedings of the 27th USENIX Conference on Security Symposium, SEC’18, pp. 1615–1631.
- Atallah, M. J., Raskin, V., Crogan, M., Hempelmann, C., Kerschbaum, F., Mohamed, D., & Naik, S. (2001). Natural Language Watermarking: Design, Analysis, and a Proof-of-Concept Implementation. In Information Hiding, Lecture Notes in Computer Science, pp. 185–200.
- Atallah, M. J., Raskin, V., Hempelmann, C. F., Karahan, M., Sion, R., Topkara, U., & Triezenberg, K. E. (2003). Natural Language Watermarking and Tamperproofing. In Information Hiding, Lecture Notes in Computer Science, pp. 196–212.
- Bagad, S., Domb, Y., Marwah, A., Shlomovits, O., & Solberg, T. (2025). Provable Watermark Extraction. OpenReview. https://openreview.net/pdf?id=JyrjeQJ8VK
- Boenisch, F. (2021). A Systematic Review on Model Watermarking for Neural Networks. Frontiers in Big Data, 4.
- Bui, T., Agarwal, S., & Collomosse, J. (2023). TrustMark: Universal Watermarking for Arbitrary Resolution Images. arXiv preprint arXiv:2311.18297.
- Chakraborty, A., et al. (2022). DynaMarks: Defending Against Deep Learning Model Extraction Using Dynamic Watermarking. arXiv preprint arXiv:2207.13321.
- Chen, A., Xu, Z., Geiger, A., Yu, J., & Su, H. (2022). TensoRF: Tensorial Radiance Fields. In European conference on computer vision, pages 333–350.
- Chen, L., Wu, H., et al. (2025). DiffuseTrace: A Transparent and Flexible Watermarking Scheme for Latent Diffusion Model. arXiv:2405.02696.
- Choi, J., Kim, J., Yang, S., & Kim, S. J. (2025). Visual Fidelity vs. Robustness: Trade-Off Analysis of Image Adversarial Watermark Mitigated by SSIM Loss. ICLR 2025 Workshop on GenAI Watermarking.
- Cox, I. J., Miller, M. L., Bloom, J. A., Fridrich, J., & Kalker, T. (2002). Digital Watermarking and Steganography. Morgan Kaufmann.
- Crothers, E., Japkowicz, N., & Viktor, H. (2022). Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods. arxiv:2210.07321[cs].
- Dai, F., & Cai, Z. (2019). Towards Near-imperceptible Steganographic Text. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4303–4308.
- Diaa, A., Aremu, T., & Lukas, N. (2025). Optimizing Adaptive Attacks against Content Watermarks for Language Models. ICLR 2025 Workshop on GenAI Watermarking.
- Dziembowski, S., Ebrahimi, S., & Hassanizadeh, P. (2024). VIMz: Private proofs of image manipulation using folding-based zkSNARKs. Cryptology ePrint Archive, Paper 2024/1063.
- Fabra, L., Solanes, J.E., Muñoz, A., Martí-Testón, A., Alabau, A., & Gracia, L. (2024). Application of Neural Radiance Fields (NeRFs) for 3D Model Representation in the Industrial Metaverse. Applied Sciences, 14(5):1825.
- Feng, W., Zhang, L., & Chen, T. (2025). A novel blockchain-watermarking mechanism utilizing interplanetary file system and fast walsh hadamard transform. Scientific Reports, 2589004224020467.
- Feng, W., Zhou, W., He, J., Zhang, J., Wei, T., Li, G., Zhang, T., Zhang, W., & Yu, N. (2024). AquaLoRA: Toward white-box protection for customized stable diffusion models via watermark lora. In International Conference on Machine Learning (ICML).
- Fernandez, P., Couairon, G., Jégou, H., Douze, M., & Furon, T. (2023). The stable signature: Rooting watermarks in latent diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 22466–22477.
- Gloaguen, T., Jovanović, N., Staab, R., & Vechev, M. (2025). Discovering Spoofing Attempts on Language Model Watermarks. ICLR 2025 Workshop on GenAI Watermarking.
- Grinbaum, A., & Adomaitis, L. (2022). The Ethical Need for Watermarks in Machine-Generated Language. arxiv:2209.03118[cs].
- Huang, X., Li, R., Cheung, Y., Cheung, K.C., See, S., & Wan, R. (2024). Gaussianmarker: Uncertainty-aware copyright protection of 3d gaussian splatting. In Advances in Neural Information Processing Systems (NeurIPS).
- Jang, Y., Lee, D.I., Jang, M., Kim, J.W., Yang, F., & Kim, S. (2024). WateRF: Robust Watermarks in Radiance Fields for Protection of Copyrights. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12087–12097.
- Jia, H., Choquette-Choo, C. A., Chandrasekaran, V., & Papernot, N. (2021). Entangled watermarks as a defense against model extraction. In 30th USENIX Security Symposium (USENIX Security 21), pp. 1937–1954.
- Jiang, L., Zhao, Y., & Li, Z. (2024). SmartMark: Software Watermarking Scheme for Smart Contracts. IEEE Symposium on Security and Privacy.
- Kaptchuk, G., Jois, T. M., Green, M., & Rubin, A. D. (2021). Meteor: Cryptographically secure steganography for realistic distributions.
- Kirchenbauer, J., Geiping, J., Goldblum, M., & Goldstein, T. (2023). A Watermark for Large Language Models. arXiv preprint arXiv:2301.10226.
- Kohrita, T., & Towa, P. (2023). Zeromorph: Zero-knowledge multilinear-evaluation proofs from homomorphic univariate commitments. Cryptology ePrint Archive, Paper 2023/917.
- Kulthe, S., Ahmed, F., Collomosse, J., & Bui, T. (2025). MultiNeRF: Multiple Watermark Embedding for Neural Radiance Fields. arXiv:2504.02517.
- Kumar, V., Patel, S., et al. (2025). AudioSeal: Robust and Efficient Audio Watermarking with Localized Detection. IEEE Transactions on Audio, Speech, and Language Processing.
- Lei, L., Gai, K., Yu, J., & Zhu, L. (2024). DiffuseTrace: A transparent and flexible watermarking scheme for latent diffusion model. arXiv preprint arXiv:2405.02696.
- Li, C., Li, S., Zhao, Y., Zhu, W., & Lin, Y. (2022). RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering. In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, pages 1–9.
- Li, C., Liu, H., Fan, Z., Li, W., Liu, Y., Pan, P., & Yuan, Y. (2024). Gaussianstego: A generalizable stenography pipeline for generative 3d gaussians splatting. arXiv preprint arXiv:2407.01301.
- Li, X., Yang, B., Cheng, D., & Zeng, T. (2009). A generalization of LSB matching. IEEE Signal Process. Lett. 16, 69–72.
- Liu, J., Zhao, Z., Ji, H., et al. (2024). Digital Watermarking Technology for AI-Generated Images: A Survey. Mathematics 13(4):651.
- Lu, C., Liu, S., & Wang, J. (2024). Attacking and Defending Neural Watermarks in Generative Models. arXiv preprint arXiv:2402.00001.
- Luo, Z., Guo, Q., Cheung, K.C., See, S., & Wan, R. (2023). CopyRNeRF: Protecting the copyright of neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 22401–22411.
- Meral, H. M., Sankur, B., Sumru Ozsoy, A., Gungor, T., & Sevinc, E. (2009). Natural language watermarking via morphosyntactic alterations. Computer Speech & Language, 23(1):107–125.
- Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., & Ng, R. (2021). NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Communications of the ACM, 65(1):99–106.
- Min, R., Li, S., Chen, H., & Cheng, M. (2024). A watermark-conditioned diffusion model for ip protection. In European conference on computer vision (ECCV).
- Mirsky, Y., Demontis, A., Kotak, J., Shankar, R., Gelei, D., Yang, L., Zhang, X., Pintor, M., Lee, W., Elovici, Y., & Biggio, B. (2023). The Threat of Offensive AI to Organizations. Computers & Security, 124:103006.
- Pan, Y., Yang, C., Lin, Y., et al. (2025). Can LLM Watermarks Robustly Prevent Unauthorized Knowledge Distillation? ICLR 2025 Workshop on GenAI Watermarking.
- Petitcolas, F., Anderson, R., & Kuhn, M. (1999). Information hiding-a survey. Proceedings of the IEEE, 87(7):1062–1078.
- Petrov, A., Agarwal, S., Torr, P., Bibi, A., & Collomosse, J. (2025). On the Coexistence and Ensembling of Watermarks. Extracted from: https://arxiv.org/html/2501.17356v1
- Rouhani, B. D., Chen, H., & Koushanfar, F. (2019). Deepsigns: An end-to-end watermarking framework for ownership protection of deep neural networks. In Proceedings of International Conference on ASPLOS, pages 485–497.
- Sander, T., Fernandez, P., Mahloujifar, S., Durmus, A. O., & Guo, C. (2025). Detecting Benchmark Contamination Through Watermarking. ICLR 2025 Workshop on GenAI Watermarking.
- Schramowski, P., et al. (2023). Watermarking and Provenance in Generative AI. arXiv preprint arXiv:2306.07863.
- Sharma, N., & Kim, J. (2025). Intellectual Property Protection using Blockchain and Digital Watermarking. IEEE Conference on Blockchain and Digital Watermarking.
- Song, Q., Luo, Z., Cheung, K.C., See, S., & Wan, R. (2024). Protecting NeRFs’ Copyright via Plug-And-Play Watermarking Base Model. In European Conference on Computer Vision, pages 57–73.
- Springer, J., Wolpert, L., & Chen, Y. (2025). Visual Watermarking in the Era of Diffusion Models: Advances and Challenges. arXiv:2505.08197.
- Szyller, S., Atli, B. G., Marchal, S., & Asokan, N. (2021). DAWN: Dynamic adversarial watermarking of neural networks. In Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 20–24 October 2021; pp. 4417–4425.
- Tancik, M., Mildenhall, B., & Ng, R. (2020). StegaStamp: Invisible Hyperlinks in Physical Photographs. In Proc. CVPR, pages 2117–2126.
- Thietke, J., Müller, A., Lukovnikov, D., Fischer, A., & Quiring, E. (2025). Towards A Correct Usage of Cryptography in Semantic Watermarks for Diffusion Models. ICLR 2025 Workshop on GenAI Watermarking.
- Topkara, M., Riccardi, G., Hakkani-Tür, D., & Atallah, M. J. (2006). Natural language watermarking: Challenges in building a practical system.
- Wang, K., Li, J., et al. (2025). PromptCARE: Prompt Copyright Protection by Watermark Injection and Verification. Proceedings of ACM Multimedia 2025.
- Wen, Y., Kirchenbauer, J., Geiping, J., & Goldstein, T. (2024). Tree-rings watermarks: Invisible fingerprints for diffusion images. Advances in Neural Information Processing Systems, 36.
- Xu, X., Yao, Y., & Liu, Y. (2024). Learning to watermark LLM-generated text via reinforcement learning. arXiv preprint arXiv:2403.10553.
- Xu, X., et al. (2025). Robust Multi-bit Text Watermark with LLM-based Paraphrasers. ICLR 2025 Workshop on GenAI Watermarking.
- Yang, Z., Zeng, K., Chen, K., Fang, H., Zhang, W., & Yu, N. (2024). Gaussian shading: Provable performance-lossless image watermarking for diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12162–12171.
- Zhang, R., Hussain, S. S., Neekhara, P., & Koushanfar, F. (2024). REMARK-LLM: A robust and efficient watermarking framework for generative large language models. In 33rd USENIX Security Symposium, 1813-1830.
- Zhang, T., & Liu, Y. (2025). LVMark: Robust Watermark for Latent Video Diffusion Models. arXiv:2412.09122.
- Zhang, X., Meng, J., Li, R., Xu, Z., Zhang, Y., & Zhang, J. (2024). GS-Hider: Hiding Messages into 3D Gaussian Splatting. arXiv preprint arXiv:2405.15118.
- Zhao, Y., Pang, T., Du, C., Yang, X., Cheung, N.M., & Lin, M. (2023). A recipe for watermarking diffusion models. arXiv preprint arXiv:2303.10137.
- Zhu, J., Kaplan, R., Johnson, J., & Fei-Fei, L. (2018). HiDDeN: Hiding Data with Deep Networks. In Proc. ECCV, pages 657–672.
- Ziegler, Z., Deng, Y., & Rush, A. (2019). Neural Linguistic Steganography.
Industry & Research Organizations
- Access Now. (2023). Watermarking & generative AI: what, how, why (and why not). Retrieved from https://www.accessnow.org/watermarking-generative-ai-what-how-why-and-why-not/
- ACM Computing Surveys. (2024). A Survey of Text Watermarking in the Era of Large Language Models. Retrieved from https://dl.acm.org/doi/10.1145/3691626
- Brookings Institution. (2024). Detecting AI fingerprints: A guide to watermarking and beyond. Retrieved from https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
- C2PA. (2024). Coalition for Content Provenance and Authenticity.
- DataCamp. (2025). AI Watermarking: How It Works, Applications, Challenges. Retrieved from https://www.datacamp.com/blog/ai-watermarking
- DataScientest. (2023). AI Watermarking: All you need to know. Retrieved from https://datascientest.com/en/ai-watermarking-all-you-need-to-know
- DeepMind. (2025). SynthID: Watermarking AI-generated text and video. Google DeepMind Technologies.
- EFF. (2024). AI Watermarking Won’t Curb Disinformation. Retrieved from https://www.eff.org/deeplinks/2024/01/ai-watermarking-wont-curb-disinformation
- Hugging Face. (2024). AI Watermarking 101: Tools and Techniques. Retrieved from https://huggingface.co/blog/watermarking
- ICLR Workshop. (2025). Workshop on GenAI Watermarking. International Conference on Learning Representations. Retrieved from https://iclr.cc/virtual/2025/workshop/23975 and https://openreview.net/pdf?id=euhFSyW2CA
- ITU. (2024). AI watermarking: A watershed for multimedia authenticity. Retrieved from https://www.itu.int/hub/2024/05/ai-watermarking-a-watershed-for-multimedia-authenticity/
- MIT Technology Review. (2024). It’s easy to tamper with watermarks from AI-generated text. Retrieved from https://www.technologyreview.com/2024/03/29/1090310/its-easy-to-tamper-with-watermarks-from-ai-generated-text/
- Nature. (2024). AI watermarking must be watertight to be effective. Retrieved from https://www.nature.com/articles/d41586-024-03418-x
- RAND. (2024). The Case for and Against AI Watermarking. Retrieved from https://www.rand.org/pubs/commentary/2024/01/the-case-for-and-against-ai-watermarking.html
- SoftwareMill. (2024). What is AI watermarking? Retrieved from https://softwaremill.com/what-is-ai-watermarking/
- TechTarget. (2024). What is AI watermarking and how does it work? Retrieved from https://www.techtarget.com/searchenterpriseai/definition/AI-watermarking
- WordLift. (2024). AI Content Protection: Understanding Watermarking Essentials. Retrieved from https://wordlift.io/blog/en/watermarking-for-ai-content/
Government & Regulatory Resources
- Data Innovation. (2024). The AI Act’s AI Watermarking Requirement Is a Misstep in the Quest for Transparency. Retrieved from https://datainnovation.org/2024/07/the-ai-acts-ai-watermarking-requirement-is-a-misstep-in-the-quest-for-transparency/
- Federal Times. (2024). The case for and against AI watermarking. Retrieved from https://www.federaltimes.com/opinions/2024/01/16/the-case-for-and-against-ai-watermarking/
- FedScoop. (2024). AI watermarking could be exploited by bad actors to spread misinformation. Retrieved from https://fedscoop.com/ai-watermarking-misinformation-election-bad-actors-congress/
- Forward Pathway. (2025). AI-Generated Content Detection: Watermarking Technology, Applications, and Ethical Challenges in AIGC Security. Retrieved from https://www.forwardpathway.us/ai-generated-content-detection-watermarking-technology-applications-and-ethical-challenges-in-aigc-security
- ResearchGate. (2023). LEGAL AND ETHICAL DIMENSIONS OF AI WATERMARKING IN PRIVACY-CENTRIC CONTEXTS. Retrieved from https://www.researchgate.net/publication/391279684_LEGAL_AND_ETHICAL_DIMENSIONS_OF_AI_WATERMARKING_IN_PRIVACY-_CENTRIC_CONTEXTS
Thanks for reading!